19970521 152

Final Report for Contract # N00039-91-C-0162

Research on Wide Spectrum Languages and
Research Environments for System Design and
Specification

June 1, 1991 — September 30, 1995

Principal Investigator: David C. Luckham

1 Abstract

We designed new formal specification languages, tools and methodologies under
this project. The languages, tools and methodologies allow the complete develop-
ment process of large systems, from requirements and design through to testing
and maintenance, to be subject to new analysis techniques based on machine
processable formal specifications.

The formal specification languages used in the project or developed with full or
partial support under this contract were Anna, TSL, TSL 1.5, VAL and Rapide.
The analysis tools developed and enhanced as part of this project were the Anna
Runtime Monitoring System and Anna Specification Analyzer. A number of
methodologies and concepts based on formal specifications were developed as part
of this project including debugging of specifications, methodologies for algebraic
specification checking, methodologies for concurrent checking of specifications,
methodologies for designing specifications and methodologies for system mainte-
nance using specifications. A number of papers and technical reports and one
book was published under this coatract. A list of publications is included in this
report.

A lot of the effort in the project was spent on technology transfer. The training
activities on formal specification included university courses and a tutorial in
TriAda '91. Anna tools were ported to a number of platforms and the subset of
Ada handled was enhanced. Anna was and is being used at a number of sites
outside Stanford.

2 Introduction

The objective of this project was the development of new specification languages
and techniques for the cost effective production of highly reliable, reusable Ada

DTIC QUALITY IINSPECTED 3




components.

Our approach was to design a specification language based on Anna and to de-
velop environment tools supporting applications of this language to Ada and
other languages. The specification language and tools facilitate new development
processes for large Ada systems. These processes allow all stages of the life-cycle
from requirements analysis and design through to testing and maintenance, to be
subjected to new automated analysis and synthesis techniques based on machine
processable formal specifications.

We also utilized Anna technology to develop a specification language compo-
nent of Rapide. This involves designing a specification language suitable for
constraint-based specification of distributed systems that is both powerful and
easily checkable at runtime. This version of the specification language is being
designed to apply to the poset (partially ordered event set) executions of Rapide,
and also to include temporal operators.

Much of our current effort is devoted to technology transfer by improving our
Anna toolset. Development of new tools focuses on implementation algorithms to
take advantage of new advances in high performance computing. Improvements
in the Anna toolset emphasizes support for new rigorous methods of applying
formal specifications, and also is in response to feedback from the Anna user
community.

3 Results Achieved

3.1 Specification Languages

A number of specification languages were developed and enhanced as part of this
project. TSL was extended to TSL 1.5 [30] and the ideas from Anna, TSL and
VAL were used in the development of Rapide [27, 50].

3.2 Specification-based Tools
3.2.1 The Anna Specification Analyzer

We extended the Anna toolset with a new tool, the Anna Package Specification
Analyzer, that supports requirements analysis by symbolic execution and logical
inference applied to package interface specifications. This is an advanced tool
for analyzing formally specified package interfaces. It allows designers to check
conformance of the Ada interfaces with requirements prior to implementation.
The tool and its uses are documented in a user’s guide available as Stanford
University Technical Note CSL-TN-93-390.




3.2.2 Anna Runtime Checking System

The Anna runtime checking tools have been extended to support full Ada’83
as well as many more Anna constructs such as algebraic specifications. We up-
graded to a new front-end generated by Arcadia’s Aflex and Ayacc. The full
Anna toolset supports early life-cycle activities as well as testing and debugging.
Significant new tool features include checking of algebraic specifications and using
multiprocessor platforms to speed-up the checking process.

Runtime Checking of Algebraic Specifications The methodology devel-
oped for algebraic specification checking was implemented and incorporated into
the run-time checking tools. The methodology involves an incremental theorem
prover that monitors the execution of the underlying program. The theorem
prover determines when certain checks need to be performed on values generated
by the program. Programmers can now have a reasonable portion of their ax-
lomatic specifications of Ada packages checked at run-time. The details of this
methodology is described in a paper published in TAV’91.

Concurrent Runtime Checking on Multi-Processors Concurrent check-
ing of annotations was also implemented in the Anna toolset and was released.
This allows the runtime overhead of annotation checking to be off-loaded to other
Processors.

A New Graphical User Interface A graphical user interface to the Anna De-
bugging system was implemented using the Chiron tools available from the ARPA
Arcadia project at UC Irvine. This interface creates and maintains several win-
dows corresponding to various requirements of Anna debugging: program source,
program I/O, source of which annotations were violated, and source of where
the annotations were violated. The interface was demonstrated at InterCHI’93,
the 1993 Conference on Human Factors in Computing Systems, Amsterdam, The
Netherlands, April 24-29, 1993, sponsored by ACM/SIGCHI.

3.3 New Methodologies, Concepts and Ideas

3.3.1 Extension of Anna Runtime Checking Technology to Algebraic
Specifications

Run-time checking of formal specifications was extended to more complex Anna
constructs such as algebraic specifications. Algebraic specification checking re-
quires maintaining program history as well as theorem proving at run-time. A
paper describing this algorithm was published in TAV’91.




3.3.2 Building Secure Systems using Anna and Concurrent Checking

A new methodology was developed for building secure Ada systems using run-
time checking of formal Anna specifications on high performance multiproces-
sors. Programs are monitored continuously for specification consistency during
program execution; the time penalty incurred in checking is minimized by dis-
tributing monitoring onto different processors. Permanent runtime monitoring
is aimed particularly at security and safety problems that occur even in systems
produced by the most rigorous formal methods, for example due to failures in
hardware, compiler errors, etc. This methodology is described in a paper pub-
lished in IEEE Computer, March 1993.

3.3.3 Debugging using Formal Specifications
New techniques for applying Anna to Ada software production were developed. A

debugging technique called ”2-dimensional pinpointing” was published in IEEE
Software, Jan.’91.

3.3.4 Specification Development Methodologies

Specification development methodologies were published in COMPSAC’90.

3.3.5 Software Maintenance using Formal Specifications

Software maintenance and reuse techniques using formal specifications have been
published in CSM’90.

3.3.6 Application of Anna Technology to Other Languages

A study was conducted for designing an Anna-like language for C++.

Anna concepts and technology have been reused extensively in the development of
the APP system by Dr. D. Rosenblum at ATT Bell Labs. APP is an Annotation
Preprocessor for C programs developed in Unix-based environments. APP allows
annotations to be used to detect a wide variety of faults in C programs. It is
designed and engineered for ease-of-use in industry. APP has been used in the
development of a variety of software systems in C over the past few years.

3.3.7 Prototech Technology Transfer

We adapted TSL, VAL and Anna technology into our Rapide Prototech environ-
ment. This work involved extending and combining TSL, VAL and Anna into a

4



language for specifying and checking the behavior of Rapide prototypes. Annota-
tions are based not only on predicates (as in Anna) but also on patterns of events
(as in TSL) that express constraints on partial-orders of events and temporal
relationships between events in concurrent Rapide program executions.

3.3.8 Type checking in the presence of specifications

We investigated algorithms to extend the standard static type checking of Rapide
to include semantic information based on formal specifications in the new speci-
fication language.

3.4 Technology Transfer
3.4.1 Courses, Tutorials and Other Educational Activities

We conducted a full-day tutorial course on Anna and formal methods during
TriAda’9l, and have taught Anna to students at Stanford SUNY Binghamton and
UG, Irvine. In addition, we published a book on Anna programming methodology
and on Anna program examples. In addition, we published many other reports
to expose computer professional to formal methods technology using Anna and
Ada. A selection of published articles is included below. The Anna tools have
also been upgraded to support full Ada’83 and has been distributed for use in
various training programs.

3.4.2 Applications of Anna and Tools Outside PAVG

Anna technology transfer was streamlined due to increased demand. We maintain
an electronic-mail response service, and use FTP to allow quick acquisition of the
tools. The toolset has been acquired by at least 100 parties worldwide. The source
code is also made available to parties interested in porting to other platforms such
as Sparcstations, VAXes, and 386-based PC’s. Current uses include large-scale
systems testing, graduate school courses, and applications of components of the
tool suite.

Listed below are a few outside Anna users and a brief description of how Anna
was and is being used:

* Robert Willis of Hampton University developed a series of very large Ada
projects and used Anna in their development.

e Rodney L. Bown of University of Houston, Clear Lake ported Anna for use
in mission critical NASA software projects.



e Allan Willey of Motorola used the toolset in the Cellular Infrastructure
development group for Ada projects.

e Rod Chapman of York University, England integrated the Anna toolset and
York University Ada compiler. This included extending and modifying the
Anna language.

e Fernando Naveda of University of Scranton used the Anna tools in a grad-
uate course for teaching good software development practices.

e Reg Meeson of IDA used the toolset as a technology
demonstration/evaluation exercise.

e Francois Charlot of Universite Paris-Sud worked on a PhD thesis on speci-
fying large software systems and used Anna as an abstraction language.

e Sergio Antoy of Portland State University used the Anna toolset in graduate
courses on formal methods for over three years.

e Richard Taylor of University of California, Irvine has taught Anna and used
the toolset in an undergraduate course on software engineering.

e Larry Matthias of Lockheed Engineering and Sciences Company, Hampton,
Virginia, used the Anna toolset in a project for NASA involving an image
processing system for satellite data.

Technology transfer is being actively promoted, not only by upgrading the Anna
toolset to support full Anna and Ada’83, but also porting to a variety of com-
puters. The toolset source is available via anonymous FTP. Ports of Anna tools
to other platforms are also being made by Anna users.

3.4.3 Anna use in Design of DSSA Languages

IBM DSSA team presentations at the ARPA DSSA March 1993 meeting doc-
ument the use of LileAnna, which reuses Anna as a subset, in the process of
developing the IBM ADAGE Avionics architecture. Anna and LileAnna were
also reviewed in the Honeywell DSSA team presentation by Dr. S. Vestal at the
same meeting.

3.4.4 Reuse of Anna at ATT for Checking C Programs

Anna concepts and technology have been reused extensively in the development of
the APP system by Dr. D. Rosenblum at ATT Bell Labs. APP is an Annotation
Preprocessor for C programs developed in Unix-based environments. APP allows
annotations to be used to detect a wide variety of faults in C programs. It is

6



designed and engineered for ease-of-use in industry. APP has been used in the
development of a variety of software systems in C over the past few years.

Additionally, Anna was added to the NASA’s AdaNET public domain repository.

3.4.5 Availablity of Anna on Multiple Platforms

The Anna toolset has been ported to the following platforms: Vax/VMS,
Vax/Ultrix, SparcStation, Meridian compiler, York Ada compiler,
SCO UNIX/386, MSDOS/386, IBM RS/6000.

‘The most recent Anna toolset release includes the Specification Analyzer, con-
current runtime specification checking, runtime checking of algebraic axioms, and
the Arcadia Chiron/Anna interface. The full toolset source has been made avail-
able via anonymous FTP. Implementation-dependent portions of the toolset have
been isolated to a single package, and alternate implementations of this package
are being maintained for Sun/3, SparcStation 2, VAX/VMS, and Sequent Sym-
metry. The toolset has been distributed to at least sixty sites: twenty in academia
and forty in industry.

3.5 Papers and Books

A. Goyal and S. Sankar. The Application of Formal Specifications to Software
Documentation and Debugging. Technical Report 93-392, Computer Systems
Laboratory, Stanford University, 1993.

Sriram Sankar and Anoop Goyal and Prakash Sikchi. Software Testing using
Algebraic Specification Based Test Oracles. Technical Report 93-566, Computer
Systems Laboratory, Stanford University, 1993.

W. Mann. The anna package specification analyzer user’s guide. Technical Note
CSL-TN-93-390, Computer Systems Lab, Stanford University, January 1993.

S. Sankar and M. Mandal. Concurrent runtime monitoring of formally specified
programs. Technical Report 90-425, Computer Systems Laboratory, Stanford
University, 1990. Also published in IEEE Computer 1993.

D. C. Luckham, S. Sankar, W. Mann, and A. Goyal. Anna - A Language for
Specifying Ada. In Proceedings of the DARPA Software Technology Conference.
Los Angeles, California. April, 1992. Pages 498-501.

S. Sankar. Run-time consistency checking of algebraic specifications. In Pro-
ceedings of the Symposium on Testing, Analysis, and Verification (TAV4), pages
123-129, Victoria, Canada, October 1991. ACM Press.

J. J. Kenney and W. Mann. Anna Package Specification: Case Studies. Techni-
cal Report 91-496, Computer Systems Laboratory, Stanford University, October
1991. (Program Analysis and Verification Group Report 56).

7



M. Walicki, J. U. Skakkebaek, and S. Sankar. The Stanford Ada style checker:
An application of the Anna tools and methodology. Technical Report 91-488,
Computer Systems Laboratory, Stanford University, August 1991. (Program
Analysis and Verification Group Report 55).

S. Sankar and D. S. Rosenblum. Runtime Checking and Debugging of Formally
Specified Programs. Surveyors’ Forum, ACM Computing Surveys. 23(1) March,
1991. Pages 125-127.

P. R. H. Place, W. G. Wood, D. C. Luckham, W. Mann, and S. Sankar. Formal
development of Ada programs using Z and Anna: A case study. Technical Report
CMU/SEI-91-TR-1, Software Engineering Institute, Carnegie-Mellon University,
February 1991.

D. C. Luckham, S. Sankar, and S. Takahashi. Two dimensional pinpointing:
An application of formal specification to debugging packages. IEEE Software,
8(1):74-84, January 1991. (Also Stanford University Technical Report No. CSL-
TR-89-379.).

D. C. Luckham. Programming with Specifications: An Introduction to ANNA,
A Language for Specifying Ada Programs. Texts and Monographs in Computer
Science. Springer-Verlag, October, 1990.

S. Sankar and M. Mandal. Concurrent runtime monitoring of formally specified
programs. IEEE Computer, March 1993. Pages 32-41.

D. C. Luckham, S. Sankar, W. Mann, and A. Goyal. Anna - a language for
specifying ada. In Proceedings of the DARPA Software Technology Conference.
Los Angeles, California. April, 1992. Pages 498-501.

D. Rosenblum, A Practical Approach to Programming with Assertions, forthcom-
ing, IEEE Transactions or Software Engineering. '

4 Conclusions

References

(1] L. M. Augustin, B. A. Gennart, Y. Huh, D. C. Luckham, and A. G. Stan-
culescu. Verification of VHDL designs using VAL. In Proceedings of the 25th
Design Automation Conference (DAC), pages 48-53, Anaheim, CA, June
1988. IEEE Computer Society Press.

[2] Larry M. Augustin, David C. Luckham, Benoit A. Gennart, Youm Huh,
and Alec G. Stanculescu. Hardware Design and Simulation in VAL/VHDL.
Kluwer Academic Publishers, October 1990. 322 pages.




3]

[5]

[

[10]

[11]

[12]

[13]

Doug Bryan. Rapide-0.2 language and tool-set overview. Technical Note
CSL-TN-92-387, Computer Systems Lab, Stanford University, February
1992.

Doug Bryan. Using rapide to model and specify inter-object beahvior. In
OOPSLA 94 workshop on Precise behavioral specifications in OO informa-
tion modeling, Oct. 24, 1994.

Douglas L. Bryan. Run-time monitoring of tasking behavior using a specifica-
tion language. In Second Workshop on Large Grain Parallelism, Pittsburgh,
Pennsylvania, 11-14 October 1987. Software Engineering Institute, Carnegie
Mellon University. An extended abstract.

Douglas L. Bryan. An algebraic specification of the partial orders generated
by concurrent Ada computations. In Proceedings of Tri-Ada ’89, pages 225—
241. ACM Press, October 1989.

Anoop Goyal and Sriram Sankar. Software documentation and testing using
formal specifications: An application of anna and its associated tool-set. In
preparation.

D. P. Helmbold. The meaning of TSL: An abstract implementation of TSL-1.
Technical Report CSL-TR~-88-353, Computer Systems Laboratory, Stanford

University, March 1988. Also published by Computer Information Sciences
Board, UC Santa Cruz as UCSC-CRL-87-29.

D. P. Heimbold and D. C. Luckham. Runtime detection and description of
deadness errors in Ada tasking. Technical Report 83-249, Computer Systems
Laboratory, Stanford University, November 1983. (Program Analysis and
Verification Group Report 22).

D. P. Helmbold and D. C. Luckham. Debugging Ada tasking programs.
IEEE Software, 2(2):47-57, March 1985. (Also Stanford University Com-
puter Systems Laboratory Technical Report No. 84-262).

D. P. Helmbold and D. C. Luckham. TSL: Task sequencing language. In
Ada in Usze: Proceedings of the Ada International Conference, pages 255—
274. Cambridge University Press, May 1985.

David P. Helmbold and Douglas L. Bryan. Design of run time monitors for
concurrent programs. Technical Report CSL-TR-89-395, Computer Sys-
tems Laboratory, Stanford University, October 1989.

Alexander Hsieh. Rapide-0.2 examples. Technical Report CSL-TR-92-510,
Computer Systems Lab, Stanford University, February 1992.




[14] D. Katiyar, D. C. Luckham, N. Madhav, S. Meldal, J. C. Mitchell, and
S. Sankar. Subtyping, assignment, and cloning in a concurrent object-
oriented language. In Proceedings of the DARPA Software Technology Con-
ference, pages 458-470, Los Angeles, California, April 1992. DARPA.

[15] John J. Kenney. Erecutable Formal Models of Distributed Transaction Sys-
tems based on Event Processing. PhD thesis, Stanford University, December
1995. forthcoming Stanford Dissertation.

[16] B. Krieg-Briickner. Consistency checking in Ada and Anna: A transforma-
tional approach. Ada Letters, 3(2):46-54, September-October 1983.

(17] B. Krieg-Briickner and D. C. Luckham. Anna: Towards a language for
annotating Ada programs. ACM SIGPLAN Notices, 15(11):128-138, 1980.

[18] D. C. Luckham, D. P. Helmbold, S. Meldal, D. L. Bryan, and M. A. Haberler.
Task sequencing language for specifying distributed Ada systems: TSL-
1. In Habermann and Montanari, editors, System Development and Ada,
proceedings of the CRAI workshop on Software Factories and Ada. Lecture
Notes in Computer Science. Number 275, pages 249-305. Springer-Verlag,
May 1986.

[19] D. C. Luckham, S. Sankar, W. Mann, and A. Goyal. Anna — a language
for specifying Ada. In Proceedings of the DARPA Software Technology Con-
jerence, pages 498-501, Los Angeles, California, April 1992. DARPA.

(20] D. C. Luckham, S. Sankar, and S. Takahashi. Two dimensional pinpointing:
An application of formal specification to debugging packages. IEEE Software,
8(1):74-84, January 1991. (Also Stanford University Technical Report No.
CSL-TR~89-379.).

i21] D. C. Luckham and F. W. von Henke. An overview of Anna, a specification
language for Ada. IEEE Software, 2(2):9-23, March 1985.

(22] David C. Luckham. Programming with Specifications: An Introduction to
ANNA, A Language for Specifying Ada Programs. Texts and Monographs
in Computer Science. Springer-Verlag, October, 1990.

[23] David C. Luckham and Benoit A. Gennart. Event patterns: a language
construct for hierarchical design of concurrent systems.

[24] David C. Luckham, David P. Helmbold, Sigurd Meldal, Douglas L. Bryan,
and Michael A. Haberler. Task sequencing language for specifying dis-
tributed Ada systems: TSL-1. In Proceedings of PARLE: Conference on
Parallel Architectures and Languages Europe. Lecture Notes in Computer
Science. Number 259, Volume II: Parallel Languages, pages 444-463, Eind-
hoven, The Netherlands, 15-19 June 1987. Springer-Verlag.

10




[25]

[26]

[27]

[28]

[29]

(30]

[31]

[32]

33

34]

David C. Luckham, Randall B. Neff, and David S. Rosenblum. An environ-
ment for Ada software development based on formal specification. Technical
Report CSL-TR-86-305, Stanford University, August 1986. Also published
in as an article in Ada Letters, VII(3):94-106, May/June 1987.

David C. Luckham and James Vera. An event-based architecture defini-
tion language. IEEE Transactions on Software Engineering, 21(9):717-734,
September 1995.

David C. Luckham, James Vera, Doug Bryan, Larry Augustin, and Frank
Belz. Partial orderings of event sets and their application to prototyping
concurrent, timed systems. Journal of Systems and Software, 21(3):253-265,
June 1993.

David C. Luckham, James Vera, and Sigurd Meldal. Three concepts of
system architecture. submitted to the Communications of the ACM, July
1995.

David C. Luckham, Friedrich W. von Henke, Bernd Krieg-Briickner, and
Olaf Owe. ANNA, A Language for Annotating Ada Programs, volume 260
of Lecture Notes in Computer Science. Springer-Verlag, 1987.

D.C. Luckham, S. Meldal, D.P. Helmbold, D.L. Bryan, and W. Mann. An
introduction to Task Sequencing Language, TSL 1.5. Technical Report 38,
Department of Informatics, University of Bergen, Bergen, Norway, August
1989. Preliminary version.

N. Madhav and W. R. Mann. A methodology for formal specification and im-
plementation of Ada packages using Anna. In Proceedings of the Computer
Software and Applications Conference, 1990, pages 491-496. IEEE Com-
puter Society Press, 1990. (Also Stanford University Computer Systems
Laboratory Technical Report No. 90-438).

N. Madhav and S. Sankar. Application of formal specification to software
maintenance. In Proceedings of the Conference on Software Maintenance,
pages 230-241. IEEE Computer Society Press, November 1990.

Neel Madhav. An Ada-Prolog system. In International Conference on Com-
puting and Information, pages 340-344, Niagara Falls, Canada, May 1990.
(Also Stanford University, Computer Systems Lab technical report CSL-TR-
90-437. PAVG technical Report No. 49).

W. Mann, J. Kenney, and S. Sankar. Prototype semantic analyzers for
rapidly changing languages. Program Analysis and Verification Group in-
ternal document, Computer Systems Lab, Stanford University, September
1992.

11



[35] Walter Mann. The Anna package specification analyzer user’s guide. Tech-
nical Note CSL-TN-93-390, Computer Systems Lab, Stanford University,
January 1993.

[36] Sigurd Meldal, Sriram Sankar, and James Vera. Exploiting locality in main-
taining potential causality. In Proceedings of the Tenth Annual ACM Sym-
posium on Principles of Distributed Computing, pages 231-239, New York,
NY, August 1991. ACM Press. Also Stanford University Computer Systems
Laboratory Technical Report No. CSL-TR-91-466.

[37] R. Neff. Ada/Anna Package Specification Analysis. PhD thesis, Stanford
University, December 1989. Also Stanford University Computer Systems
Laboratory Technical Report No. CSL-TR-89-406.

(38] P. R. H. Place, W. G. Wood, D. C. Luckham, W. Mann, and S. Sankar. For-
mal development of Ada programs using Z and Anna: A case study. Tech-
nical Report CMU/SEI-91-TR-1, Software Engineering Institute, Carnegie-
Mellon University, February 1991.

(39] D.S. Rosenblum. Design and Verification of Distributed Tasking Supervisors
for Concurrent Programming Languages. PhD thesis, Stanford University,
March 1988. Also Stanford University Computer Systems Laboratory Tech-
nical Report No. CSL-TR-88-357.

(40] D. S. Rosenblum, S. Sankar, and D. C. Luckham. Concurrent runtime
checking of annotated Ada programs. In Proceedings of the 6th Conference
on Foundations of Software Technology and Theoretical Computer Science,
pages 10-35. Springer-Verlag — Lecture Notes in Computer Science No. 241,
December 1986. (Also Stanford University Computer Systems Laboratory
Technical Report No. 86-312).

[41] David S. Rosenblum. A methodology for the design of Ada transformation
tools in a DIANA environment. Technical Report 85-269, Stanford Univer-
sity, February 1985. Also published in IEEE Software, 2(2):24-33, March
1985.

[42] David S. Rosenblum. Specifying concurrent systems with TSL. IEEE Soft-
ware, 8(3):52-61, May 1991.

[43] S. Sankar. Automatic Runtime Consistency Checking and Debugging of For-
mally Specified Programs. PhD thesis, Stanford University, August 1989.
Also Stanford University Department of Computer Science Technical Re-
port No. STAN-CS-89-1282, and Computer Systems Laboratory Technical
Report No. CSL-TR-89-391.

[44] S. Sankar. A note on the detection of an Ada compiler bug while debugging
an Anna program. ACM SIGPLAN Notices, 24(6):23-31, 1989.

12




[45] S. Sankar and M. Mandal. Concurrent runtime monitoring of formally spec-
ified programs. Technical Report 90-425, Computer Systems Laboratory,
Stanford University, 1990. Also in IEEE Computer, March 1993.

[46] S. Sankar and D. S. Rosenblum. The complete transformation methodology
for sequential runtime checking of an Anna subset. Technical Report 86-301,
Computer Systems Laboratory, Stanford University, June 1986. (Program
Analysis and Verification Group Report 30).

[47] S. Sankar, D. S. Rosenblum, and R. B. Neff. An implementation of Anna. In
Ada in Use: Proceedings of the Ada International Conference, Paris, pages
285-296. Cambridge University Press, May 1985.

(48] Sriram Sankar. Run-time consistency checking of algebraic specifications.
In Proceedings of the Symposium on Testing, Analysis, and Verification
(TAV/), pages 123-129, Victoria, Canada, October 1991. ACM Press.

[49] Sriram Sankar, Anoop Goyal, and Prakash Sikchi. Software testing using
algebraic specification based test oracles. Forthcoming Stanford University
Technical Report, December 1993.

[50] Rapide Design Team. The Rapide-1 Full Syntar Reference Manual. Pro-
gram Analysis and Verification Group, Computer Systems Lab., Stanford
University, version 1 edition, August 1995.

[51] F. W. von Henke, D. C. Luckham, B. Krieg-Briickner, and O. Owe. Seman-
tic specification of Ada packages. In Ada in Use: Proceedings of the Ada
International Conference, pages 185-196. Cambridge University Press, May
1985.

[52] M. Walicki, J. U. Skakkebaek, and S. Sankar. The stanford Ada style checker:
An application of the Anna tools and methodology. Technical Report 91-488.
Computer Systems Laboratory, Stanford University, August 1991. (Program
Analysis and Verification Group Report 55).

13




